Neyman-Pearson Detection of Gaus Closed-Form Error Expone
نویسندگان
چکیده
The performance of Neyman-Pearson detection of correlated stochastic signals using noisy observations is investigated via the error exponent for the miss probability with a fixed level. Using the statespace structure of the signal and observation model, a closed-form expression for the error exponent is derived, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) > 1 the error exponent decreases monotonically as the correlation becomes stronger, whereas for SNR < 1 there is an optimal correlation that maximizes the error exponent for a given SNR.
منابع مشابه
High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes
This paper investigates the effect of quantization on the performance of the Neyman-Pearson test. It is assumed that a sensing unit observes samples of a correlated stationary ergodic multivariate process. Each sample is passed through an N -point quantizer and transmitted to a decision device which performs a binary hypothesis test. For any false alarm level, it is shown that the miss probabil...
متن کاملNeyman-Pearson Detection of a Gaussian Source using Dumb Wireless Sensors
We investigate the performance of the Neyman-Pearson detection of a stationary Gaussian process in noise, using a large wireless sensor network (WSN). In our model, each sensor compresses its observation sequence using a linear precoder. The final decision is taken by a fusion center (FC) based on the compressed information. Two families of precoders are studied: random iid precoders and orthog...
متن کاملA plug-in approach to neyman-pearson classification
The Neyman-Pearson (NP) paradigm in binary classification treats type I and type II errors with different priorities. It seeks classifiers that minimize type II error, subject to a type I error constraint under a user specified level α. In this paper, plug-in classifiers are developed under the NP paradigm. Based on the fundamental Neyman-Pearson Lemma, we propose two related plug-in classifier...
متن کاملNeyman-Pearson classification under a strict constraint
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i), its probability of type I error is below a pre-specifi...
متن کاملPerformance of Target Detection in Phased-MIMO Radars
In this paper, the problem of target detection in phased-MIMO radars is considered and target detection performance of phased-MIMO radars is compared with MIMO and phased-array radars. Phased-MIMO radars combine advantages of the MIMO and phased-array radars. In these radars, the transmit array will be partitioned into a number of subarrays that are allowed to overlap and each subarray transmit...
متن کامل